418 research outputs found

    Adult neurogenesis and dendritic remodeling in hippocampal plasticity; Which one is more important?

    Get PDF
    published_or_final_versio

    A contact cavity-biased method for grand canonical Monte Carlo simulations

    Get PDF
    A modification of the cavity-biased grand canonical Monte Carlo (GCMC) proposed by Mezei is introduced here. Instead of on a fixed grid, test points of cavities are generated at the contact positions around the centers of existing particles. The increase in the probability or bias of finding a cavity is related to the radial distribution function and can hence be corrected. With this new cavity-biased implementation, an improved convergence to equihbrium is demonstrated and higher densities can be attained. Comparisons with the standard GCMC method, and the original cavity-biased scheme of Mezei are made. © 1994 American Institute of Physics.published_or_final_versio

    Adult hippocampal neurogenesis: A possible way how physical exercise counteracts stress

    Get PDF
    It was considered that neurogenesis only occurred during the embryonic and developmental stage. This view has greatly changed since the discovery of adult neurogenesis in two brain regions: the hippocampus and the olfactory bulb. Recently, it is suggested that altered hippocampal neurogenesis is related to pathophysiology of mood disorders and mechanism of antidepressant treatments. Accumulating knowledge about the effects of physical exercise on brain function suggests a special role of adult hippocampal neurogenesis in cognitive and mental health, even though the functional significance of adult neurogenesis is still debated. The beneficial effects of running correlating with increased adult neurogenesis may provide a hint that newborn neurons may be involved, at least in part, in the counteractive mechanism of physical exercise on stress-related disorders, like depression. The present review provides an overview of recent findings to emphasize the possible involvement of hippocampal neurogenesis in mediating the beneficial effects of physical exercise on counteracting stress. Copyright © 2011 Cognizant Comm. Corp.published_or_final_versio

    Differential behavioral outcome of anxiety tests in runner rats treated with corticosterone

    Get PDF
    published_or_final_versio

    Value enhancement effects of building management practices: a preliminary study in Hong Kong

    Get PDF
    postprintThe 15th Annual Conference of the Pacific Rim Real Estate Society (PRRES 2009), Sydney, Australia, 18-21 January 2009

    Lycium barbarum (wolfberry) polysaccharide facilitates ejaculatory behaviour in male rats

    Get PDF
    Poster Session AOBJECTIVE: Lycium barbarum (wolfberry) is a traditional Chinese medicine, which has been considered to have therapeutic effect on male infertility. However, there is a lack of studies support the claims. We thus investigated the effect of Lycium barbarum polysaccharide (LBP), a major component of wolfberry, on male rat copulatory behavior. METHOD: Sprague-Dawley rats were divided into two groups (n=8 for each group). The first group received oral feeding of LBP at dosage of 1mg/kg daily. The control group received vehicle (0.01M phosphate-buffered saline, served as control) feeding daily for 21 days. Copulatory tests were conducted at 7, 14 and 21 days after initiation of treatment. RESULTS: Compared to control animals, animals fed with 1mg/kg LBP showed improved copulatory behavior in terms of: 1. Higher copulatory efficiency (i.e. higher frequency to show intromission rather than mounting during the test), 2. higher ejaculation frequency and 3. Shorter ejaculation latency. The differences were found at all time points (Analyzed with two-tailed student’s t-test, p<0.05). There is no significant difference found between the two groups in terms of mount/intromission latency, which indicates no difference in time required for initiation of sexual activity. Additionally, no difference in mount frequency and intromission frequency was found. CONCLUSION: The present study provides scientific evidence for the traditional use of Lycium barbarum on male sexual behavior. The result provides basis for further study of wolfberry on sexual functioning and its use as an alternative treatment in reproductive medicine.postprintThe 30th Annual Meeting of the Australian Neuroscience Society, in conjunction with the 50th Anniversary Meeting of the Australian Physiological Society (ANS/AuPS 2010), Sydney, Australia, 31 January-3 February 2010. In Abstract Book of ANS/AuPS, 2010, p. 177, abstract no. POS-TUE-19

    Voluntary wheel running reverses the decrease in subventricular zone neurogenesis caused by corticosterone

    Get PDF
    Adult neurogenesis within the dentate gyrus of the hippocampus can be increased by voluntary exercise but is suppressed under stress, such as with corticosterone (CORT). However, the effects of exercise and corticosterone on the cell proliferation of the other traditional neurogenic site, the subventricular zone (SVZ) have been reported with controversial results. In addition, the co-treatment effects of voluntary exercise and corticosterone have not been investigated. This study aims to determine whether corticosterone can suppress cell proliferation in the SVZ, and whether this can be reversed by voluntary exercise. In the present study, the effect of chronic (4 weeks) corticosterone treatment and wheel running simultaneously on the SVZ cell proliferation of adult Sprague-Dawley rats was examined. The results showed that cell proliferation indicated by bromodeoxyuridine (BrdU) was increased by voluntary wheel running whereas it was decreased by corticosterone treatment within the SVZ of the rats without running. For the rats with both corticosterone treatment and wheel running, it was found that the number of BrdU-labeled cells was approximately at the same level as the vehicle control group. Furthermore, these proliferating cells expressed doublecortin (DCX), a migrating neuroblast marker. Wheel running increased the percentage of BrdU-labeled cells expressing DCX in the SVZ whereas corticosterone treatment decreased this percentage. Thus, chronic injection of corticosterone can decrease the number of proliferating cells while wheel running can reverse the decrease in cell proliferation within the SVZ to normal levels. In addition, corticosterone can suppress the cell differentiation within the SVZ and this was alleviated by wheel running as indicated by the double-labeling of BrdU and DCX.published_or_final_versio

    Sustained running in rats administered corticosterone prevents the development of depressive behaviors and enhances hippocampal neurogenesis and synaptic plasticity without increasing neurotrophic factor levels

    Get PDF
    We have previously shown that voluntary running acts as an anxiolytic and ameliorates deficits in hippocampal neurogenesis and spatial learning. It also reduces depression-like behaviors that are normally observed in rats that were administered either low (30 mg/kg) or moderate (40 mg/kg) doses of corticosterone (CORT). However, the protective effects of running were absent in rats treated with a high (50 mg/kg) dose of CORT. We examined whether allowing animals to exercise for 2 weeks prior and/or concurrently with the administration of 50 mg/kg CORT treatment could have similar protective effects. We examined hippocampal neurogenesis using immunohistochemical staining of proliferative and survival cells with the thymidine analogs (BrdU, CIdU, and IdU). In addition, we monitored synaptic protein expression and quantified the levels of neurotrophic factors in these animals as well as performing behavioral analyses (forced swim test and sucrose preference test). Our results indicate that the depressive phenotype and reductions in neurogenesis that normally accompany high CORT administration could only be prevented by allowing animals to exercise both prior to and concurrently with the CORT administration period. These animals also showed increases in both synaptophysin and PSD-95 protein levels, but surprisingly, neither brain-derived neurotrophic factor (BDNF) nor insulin-like growth factor 1 (IGF-1) levels were increased in these animals. The results suggest that persistent exercise can strengthen resilience to stress by promoting hippocampal neurogenesis and increasing synaptic protein levels, thereby reducing the deleterious effects of stress.published_or_final_versio
    • …
    corecore